Search results for "Low temperatures"

showing 6 items of 6 documents

Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures

2005

We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on heavily doped n-type Si samples with electron concentration in the range $3.5-16.0\times 10^{25}$ m$^{-3}$ are performed at sub-1 K temperatures. We find a good agreement between the theory and the experiment.

PhononphononsGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronsemiconductors01 natural sciences0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsPhysicsElastic scatteringRange (particle radiation)Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsScatteringbusiness.industryRelaxation (NMR)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnologySemiconductorelectron-phonon interactionsElectron temperature0210 nano-technologybusinesslow temperaturesPhysical Review Letters
researchProduct

Cooperative Thermal and Optical Switching of Spin States in a New Two-Dimensional Coordination Polymer

2003

{Fe(pmd)2[Cu(CN)2]2} (pmd = pyrimidine) displays a rigid two-dimensional structure and undergoes thermal- and optical-driven spin crossover behaviour; cooperative elastic coupling between iron(II) ions in the framework induces thermal hysteresis in the HS↔LS conversion and sigmoidal HS→LS relaxation of the photo-induced HS state at low temperatures. Niel, Virginie, Virginie.Niel@uv.es ; Galet Domingo, Ana Guadalupe, Ana.Galet@uv.es ; Gaspar Pedros, Ana Belen, Ana.B.Gaspar@uv.es ; Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

Switching ; Thermal ; Optical ; Low temperatures ; Hysteresis ; SpinSpin statesCoordination polymerUNESCO::QUÍMICAMolecular physics:QUÍMICA [UNESCO]CatalysisIonchemistry.chemical_compoundSpinSpin crossoverThermalMaterials ChemistryLow temperaturesSpin (physics)CouplingChemistryHysteresisRelaxation (NMR)Metals and Alloys:QUÍMICA::Química física [UNESCO]CROSSOVERGeneral ChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHysteresisCONVERSIONFISICA APLICADASwitchingUNESCO::QUÍMICA::Química físicaCeramics and CompositesOptical
researchProduct

Influence of the channel design on the heat and mass exchange of induction channel furnace

2011

PurposeThe purpose of this paper is to present in‐depth numerical modelling of heat and mass exchange in industrial induction channel furnace (ICF).Design/methodology/approachThe turbulent heat and mass exchange in the melt is calculated using a three‐dimensional (3D) electromagnetic model and a 3D transient large eddy simulation method. The simulation model has been verified by flow velocity and temperature measurements, which were carried out using an industrial sized channel inductor operating with Wood's metal as a low temperature model melt.FindingsThe ICF is well‐established for melting, holding and casting in the metallurgical industry. But there are still open questions regarding th…

EngineeringElectromagnetic modelsLarge Eddy simulation methodsChannel geometryHeat and mass transferDewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und MaschinenbauMechanical engineeringInductorTemperature measurementModellingMetallurgical industryChannel designExperimentWood's metalMass transferLow temperaturesIndustryMass transferWood's metalElectrical and Electronic Engineeringddc:510Low frequency oscillationsMass exchangeTemperature measurementbusiness.industryApplied MathematicsThree dimensionalFurnaceMechanicsDesign/methodology/approachDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikComputer Science ApplicationsComputational Theory and MathematicsFlow velocityThree-dimensional (3D)Casting (metalworking)Numerical modellingMetallurgySimulation modelddc:620businessSimulationCommunication channelLarge eddy simulationNumerical analysis
researchProduct

Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII

2016

The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and iterative solution of the linearized Boltzmann transport equation(BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than silicon diamond structure (d-Si) by factors of 1/2 and 1/5, respectively. The main reason for the lower lattice thermal conductivity of the clathrate structure II in comparison to d-Si was found to be the harmonic phonon spectra, while in the case of the clathrate structure VIII, the difference is mainly due to the harmonic phonon spe…

Materials scienceSiliconPhononClathrate hydrateAb initioSOLIDSchemistry.chemical_elementFOS: Physical sciences02 engineering and technology01 natural sciencesSEMICONDUCTORSLOW TEMPERATURESCondensed Matter::Materials Sciencesilicon clathrate frameworks0103 physical sciencesEQUATIONDiamond cubicSIPHONON DISPERSIONS010306 general physicsta116Condensed Matter - Materials ScienceCondensed matter physicsta114CRYSTALAnharmonicitylattice thermal conductivityMaterials Science (cond-mat.mtrl-sci)Atmospheric temperature range021001 nanoscience & nanotechnologyBoltzmann equationGENERALIZED GRADIENT APPROXIMATIONMODELchemistry0210 nano-technology
researchProduct

Low temperature heat capacity of phononic crystal membranes

2016

Phononic crystal (PnC) membranes are a promising solution to improve sensitivity of bolometric sensor devices operating at low temperatures. Previous work has concentrated only on tuning thermal conductance, but significant changes to the heat capacity are also expected due to the modification of the phonon modes. Here, we calculate the area-specific heat capacity for thin (37.5 - 300 nm) silicon and silicon nitride PnC membranes with cylindrical hole patterns of varying period, in the temperature range 1 - 350 mK. We compare the results to two- and three-dimensional Debye models, as the 3D Debye model is known to give an accurate estimate for the low-temperature heat capacity of a bulk sam…

heat capacityWork (thermodynamics)Materials scienceGeneral Physics and Astronomy02 engineering and technology01 natural sciencesHeat capacitysymbols.namesakechemistry.chemical_compoundThermal conductivity0103 physical scienceslämpökapasiteetti010306 general physicsDebye modelDebyephononic crystal membranesCondensed matter physicsta114Atmospheric temperature range021001 nanoscience & nanotechnologylcsh:QC1-999CrystallographyMembraneSilicon nitridechemistrysymbols0210 nano-technologylow temperatureslcsh:Physics
researchProduct

Thermal nucleation of cavities in liquid helium at negative pressures

1993

We have investigated the nucleation rate at which cavities are formed in $^{4}\mathrm{He}$ and $^{3}\mathrm{He}$ at negative pressures due to thermal fluctuations. To this end, we have used a density functional that reproduces the He liquid-gas interface along the coexistence line. The inclusion of thermal effects in the calculation of the barrier against nucleation results in a sizable decrease of the absolute value of the tensile strength above 1.5 K.

Liquid heliumCavitationMaterials scienceLiquid heliumFluctuacions (Física)NucleationThermodynamicsThermal fluctuationsAbsolute valueTemperatures baixesCavitacióMolecular physicsHeli líquidlaw.inventionFluctuations (Physics)Helium-4lawHelium-3Ultimate tensile strengthThermalLow temperatures
researchProduct